National Science Library of Georgia

Image from Google Jackets

Advanced magnetohydrodynamics : with applications to laboratory and astrophysical plasmas / J.P. (Hans) Goedbloed, Rony Keppens, Stefaan Poedts.

By: Contributor(s): Material type: TextTextPublisher: Cambridge : Cambridge University Press, 2010Description: 1 online resource (xvi, 634 pages) : digital, PDF file(s)Content type:
  • text
Media type:
  • computer
Carrier type:
  • online resource
ISBN:
  • 9781139195560 (ebook)
Subject(s): Additional physical formats: Print version: : No titleDDC classification:
  • 538/.6 22
LOC classification:
  • QC718.5.M36 G638 2010
Online resources:
Contents:
Machine generated contents note: Preface; Part III. Flow and Dissipation: 12. Waves and instabilities of stationary plasmas; 13. Shear flow and rotation; 14. Resistive plasma dynamics; 15. Computational linear MHD; Part IV. Toroidal Plasmas: 16. Static equilibrium of toroidal plasmas; 17. Linear dynamics of static toroidal plasmas; 18. Linear dynamics of stationary toroidal plasmas; Part V. Nonlinear Dynamics: 19. Computational nonlinear MHD; 20. Transonic MHD flows and shocks; 21. Ideal MHD in special relativity; Appendices; References; Index.
Summary: Following on from the companion volume Principles of Magnetohydrodynamics, this textbook analyzes the applications of plasma physics to thermonuclear fusion and plasma astrophysics from the single viewpoint of MHD. This approach turns out to be ever more powerful when applied to streaming plasmas (the vast majority of visible matter in the Universe), toroidal plasmas (the most promising approach to fusion energy), and nonlinear dynamics (where it all comes together with modern computational techniques and extreme transonic and relativistic plasma flows). The textbook interweaves theory and explicit calculations of waves and instabilities of streaming plasmas in complex magnetic geometries. It is ideally suited to advanced undergraduate and graduate courses in plasma physics and astrophysics.
Tags from this library: No tags from this library for this title. Log in to add tags.
No physical items for this record

Title from publisher's bibliographic system (viewed on 05 Oct 2015).

Machine generated contents note: Preface; Part III. Flow and Dissipation: 12. Waves and instabilities of stationary plasmas; 13. Shear flow and rotation; 14. Resistive plasma dynamics; 15. Computational linear MHD; Part IV. Toroidal Plasmas: 16. Static equilibrium of toroidal plasmas; 17. Linear dynamics of static toroidal plasmas; 18. Linear dynamics of stationary toroidal plasmas; Part V. Nonlinear Dynamics: 19. Computational nonlinear MHD; 20. Transonic MHD flows and shocks; 21. Ideal MHD in special relativity; Appendices; References; Index.

Following on from the companion volume Principles of Magnetohydrodynamics, this textbook analyzes the applications of plasma physics to thermonuclear fusion and plasma astrophysics from the single viewpoint of MHD. This approach turns out to be ever more powerful when applied to streaming plasmas (the vast majority of visible matter in the Universe), toroidal plasmas (the most promising approach to fusion energy), and nonlinear dynamics (where it all comes together with modern computational techniques and extreme transonic and relativistic plasma flows). The textbook interweaves theory and explicit calculations of waves and instabilities of streaming plasmas in complex magnetic geometries. It is ideally suited to advanced undergraduate and graduate courses in plasma physics and astrophysics.

There are no comments on this title.

to post a comment.
Copyright © 2023 Sciencelib.ge All rights reserved.