National Science Library of Georgia

Image from Google Jackets

The physics of deformation and fracture of polymers / A.S. Argon, Massachusetts Institute of Technology.

By: Material type: TextTextPublisher: Cambridge : Cambridge University Press, 2013Description: 1 online resource (xxi, 511 pages) : digital, PDF file(s)Content type:
  • text
Media type:
  • computer
Carrier type:
  • online resource
ISBN:
  • 9781139033046 (ebook)
Other title:
  • The Physics of Deformation & Fracture of Polymers
Subject(s): Additional physical formats: Print version: : No titleDDC classification:
  • 620.1/920413 23
LOC classification:
  • TA455.P58 A74 2013
Online resources:
Contents:
Machine generated contents note: 1. Structure of non-polymeric glasses; 2. Structure of solid polymers; 3. Overview of deformation and fracture mechanisms; 4. Small strain elastic response; 5. Linear visco-elasticity of polymers; 6. Rubber elasticity; 7. Inelastic behaviour of non-polymeric glasses; 8. Inelastic behaviour of glassy polymers; 9. Plasticity of semi-crystalline polymers; 10. Deformation instabilities in extensional plastic flow of polymers; 11. Crazing in glassy homo and hetero polymers; 12. Fracture of polymers; 13. Toughening of brittle polymers.
Summary: Demonstrating through examples, this book presents a mechanism-based perspective on the broad range of deformation and fracture response of solid polymers. It draws on the results of probing experiments and considers the similar mechanical responses of amorphous metals and inorganic compounds to develop advanced methodology for generating more precise forms of modelling. This, in turn, provides a better fundamental understanding of deformation and fracture phenomena in solid polymers. Such mechanism-based constitutive response forms have far-reaching application potential in the prediction of structural responses and in tailoring special microstructures for tough behaviour. Moreover, they can guide the development of computational codes for deformation processing of polymers at any level. Applications are wide-ranging, from large strain industrial deformation texturing to production of precision micro-fluidic devices, making this book of interest to both advanced graduate students and to practising professionals.
Tags from this library: No tags from this library for this title. Log in to add tags.
No physical items for this record

Title from publisher's bibliographic system (viewed on 05 Oct 2015).

Machine generated contents note: 1. Structure of non-polymeric glasses; 2. Structure of solid polymers; 3. Overview of deformation and fracture mechanisms; 4. Small strain elastic response; 5. Linear visco-elasticity of polymers; 6. Rubber elasticity; 7. Inelastic behaviour of non-polymeric glasses; 8. Inelastic behaviour of glassy polymers; 9. Plasticity of semi-crystalline polymers; 10. Deformation instabilities in extensional plastic flow of polymers; 11. Crazing in glassy homo and hetero polymers; 12. Fracture of polymers; 13. Toughening of brittle polymers.

Demonstrating through examples, this book presents a mechanism-based perspective on the broad range of deformation and fracture response of solid polymers. It draws on the results of probing experiments and considers the similar mechanical responses of amorphous metals and inorganic compounds to develop advanced methodology for generating more precise forms of modelling. This, in turn, provides a better fundamental understanding of deformation and fracture phenomena in solid polymers. Such mechanism-based constitutive response forms have far-reaching application potential in the prediction of structural responses and in tailoring special microstructures for tough behaviour. Moreover, they can guide the development of computational codes for deformation processing of polymers at any level. Applications are wide-ranging, from large strain industrial deformation texturing to production of precision micro-fluidic devices, making this book of interest to both advanced graduate students and to practising professionals.

There are no comments on this title.

to post a comment.
Copyright © 2023 Sciencelib.ge All rights reserved.