National Science Library of Georgia

Image from Google Jackets

Nanoscale MOS transistors : semi-classical transport and applications / David Esseni, Pierpaolo Palestri, Luca Selmi.

By: Contributor(s): Material type: TextTextPublisher: Cambridge : Cambridge University Press, 2011Description: 1 online resource (xvii, 470 pages) : digital, PDF file(s)Content type:
  • text
Media type:
  • computer
Carrier type:
  • online resource
ISBN:
  • 9780511973857 (ebook)
Subject(s): Additional physical formats: Print version: : No titleDDC classification:
  • 004.5/3 22
LOC classification:
  • TK7871.99.M44 E76 2011
Online resources:
Contents:
Machine generated contents note: 1. Introduction; 2. Bulk semiconductors and the semi-classical model; 3. Quantum confined inversion layers; 4. Carrier scattering in silicon MOS transistors; 5. The Boltzmann transport equation; 6. The Monte Carlo method for the Boltzmann transport equation; 7. Simulation of bulk and SOI silicon MOSFETs; 8. MOS transistors with arbitrary crystal orientation; 9. MOS transistors with strained silicon channels; 10. MOS transistors with alternative materials; Appendix A. Mathematical definitions and properties; Appendix B. Integrals and transformations over a finite area A; Appendix C. Calculation of the equi-energy lines with the k-p model; Appendix D. Matrix elements beyond the envelope function approximation; Appendix E. Charge density produced by a perturbation potential.
Summary: Written from an engineering standpoint, this book provides the theoretical background and physical insight needed to understand new and future developments in the modeling and design of n- and p-MOS nanoscale transistors. A wealth of applications, illustrations and examples connect the methods described to all the latest issues in nanoscale MOSFET design. Key areas covered include: • Transport in arbitrary crystal orientations and strain conditions, and new channel and gate stack materials • All the relevant transport regimes, ranging from low field mobility to quasi-ballistic transport, described using a single modeling framework • Predictive capabilities of device models, discussed with systematic comparisons to experimental results
Tags from this library: No tags from this library for this title. Log in to add tags.
No physical items for this record

Title from publisher's bibliographic system (viewed on 05 Oct 2015).

Machine generated contents note: 1. Introduction; 2. Bulk semiconductors and the semi-classical model; 3. Quantum confined inversion layers; 4. Carrier scattering in silicon MOS transistors; 5. The Boltzmann transport equation; 6. The Monte Carlo method for the Boltzmann transport equation; 7. Simulation of bulk and SOI silicon MOSFETs; 8. MOS transistors with arbitrary crystal orientation; 9. MOS transistors with strained silicon channels; 10. MOS transistors with alternative materials; Appendix A. Mathematical definitions and properties; Appendix B. Integrals and transformations over a finite area A; Appendix C. Calculation of the equi-energy lines with the k-p model; Appendix D. Matrix elements beyond the envelope function approximation; Appendix E. Charge density produced by a perturbation potential.

Written from an engineering standpoint, this book provides the theoretical background and physical insight needed to understand new and future developments in the modeling and design of n- and p-MOS nanoscale transistors. A wealth of applications, illustrations and examples connect the methods described to all the latest issues in nanoscale MOSFET design. Key areas covered include: • Transport in arbitrary crystal orientations and strain conditions, and new channel and gate stack materials • All the relevant transport regimes, ranging from low field mobility to quasi-ballistic transport, described using a single modeling framework • Predictive capabilities of device models, discussed with systematic comparisons to experimental results

There are no comments on this title.

to post a comment.
Copyright © 2023 Sciencelib.ge All rights reserved.