National Science Library of Georgia

Image from Google Jackets

Motion deblurring : algorithms and systems / edited by A.N. Rajagopalan, Indian Institute of Technology, Madras, Rama Chellappa, University of Maryland, College Park.

Contributor(s): Material type: TextTextPublisher: Cambridge : Cambridge University Press, 2014Description: 1 online resource (xiv, 293 pages) : digital, PDF file(s)Content type:
  • text
Media type:
  • computer
Carrier type:
  • online resource
ISBN:
  • 9781107360181 (ebook)
Subject(s): Additional physical formats: Print version: : No titleDDC classification:
  • 006.6 23
LOC classification:
  • TA1637.5 .M68 2014
Online resources:
Contents:
Machine generated contents note: 1. Mathematical models and practical solvers for uniform motion deblurring / Jiaya Jia -- 1.1. Non-blind deconvolution -- 1.2. Blind deconvolution -- 2. Spatially-varying image deblurring / Richard Szeliski -- 2.1. Review of image deblurring methods -- 2.2.A unified camera-shake blur model -- 2.3. Single image deblurring using motion density functions -- 2.4. Image deblurring using inertial measurement sensors -- 2.5. Generating sharp panoramas from motion-blurred videos -- 2.6. Discussion -- 3. Hybrid-imaging for motion deblurring / Shree K. Nayar -- 3.1. Introduction -- 3.2. Fundamental resolution tradeoff -- 3.3. Hybrid-imaging systems -- 3.4. Shift-invariant PSF image deblurring -- 3.5. Spatially-varying PSF image deblurring -- 3.6. Moving object deblurring -- 3.7. Discussion and summary -- 4. Efficient, blind, spatially-variant deblurring for shaken images / Jean Ponce -- 4.1. Introduction -- 4.2. Modelling spatially-variant camera-shake blur.
Contents note continued: 13.8. Summary and discussion.
Contents note continued: 11. Coded exposure motion deblurring for recognition / Scott McCloskey -- 11.1. Motion sensitivity of iris recognition -- 11.2. Coded exposure -- 11.3. Coded exposure performance on iris recognition -- 11.4. Barcodes -- 11.5. More general subject motion -- 11.6. Implications of computational imaging for recognition -- 11.7. Conclusion -- 12. Direct recognition of motion-blurred faces / Rama Chellappa -- 12.1. Introduction -- 12.2. The set of all motion-blurred images -- 12.3. Bank of classifiers approach for recognizing motion-blurred faces -- 12.4. Experimental evaluation -- 12.5. Discussion -- 13. Performance limits for motion deblurring cameras / Mohit Gupta -- 13.1. Introduction -- 13.2. Performance bounds for flutter shutter cameras -- 13.3. Performance bound for motion-invariant cameras -- 13.4. Simulations to verify performance bounds -- 13.5. Role of image priors -- 13.6. When to use computational imaging -- 13.7. Relationship to other computational imaging systems.
Contents note continued: 7.7. Optimized codes for PSF estimation -- 7.8. Implementation -- 7.9. Analysis -- 7.10. Summary -- 8. Richardson-Lucy deblurring for scenes under a projective motion path / Michael S. Brown -- 8.1. Introduction -- 8.2. Related work -- 8.3. The projective motion blur model -- 8.4. Projective motion Richardson--Lucy -- 8.5. Motion estimation -- 8.6. Experiment results -- 8.7. Discussion and conclusion -- 9. HDR imaging in the presence of motion blur / A.N. Rajagopalan -- 9.1. Introduction -- 9.2. Existing approaches to HDRJ -- 9.3. CRF, irradiance estimation, and tone-mapping -- 9.4. HDR imaging under uniform blurring -- 9.5. HDRI for non-uniform blurring -- 9.6. Experimental results -- 9.7. Conclusions and discussions -- 10.Compressive video sensing to tackle motion blur / Dikpal Reddy -- 10.1. Introduction -- 10.2. Related work -- 10.3. Imaging architecture -- 10.4. High-speed video recovery -- 10.5. Experimental results -- 10.6. Conclusions.
Contents note continued: 4.3. The computational model -- 4.4. Blind estimation of blur from a single image -- 4.5. Efficient computation of the spatially-variant model -- 4.6. Single-image deblurring results -- 4.7. Implementation -- 4.8. Conclusion -- 5. Removing camera shake in smartphones without hardware stabilization / Jan Flusser -- 5.1. Introduction -- 5.2. Image acquisition model -- 5.3. Inverse problem -- 5.4. Pinhole camera model -- 5.5. Smartphone application -- 5.6. Evaluation -- 5.7. Conclusions -- 6. Multi-sensor fusion for motion deblurring / Jlngyi Yu -- 6.1. Introduction -- 6.2. Hybrid-speed sensor -- 6.3. Motion deblurring -- 6.4. Depth map super-resolution -- 6.5. Extensions to low-light imaging -- 6.6. Discussion and summary -- 7. Motion deblurring using fluttered shutter / Amit Agrawal -- 7.1. Related work -- 7.2. Coded exposure photography -- 7.3. Image deconvolution -- 7.4. Code selection -- 7.5. Linear solution for deblurring -- 7.6. Resolution enhancement.
Summary: A comprehensive guide to restoring images degraded by motion blur, bridging the traditional approaches and emerging computational photography-based techniques, and bringing together a wide range of methods emerging from basic theory as well as cutting-edge research. It encompasses both algorithms and architectures, providing detailed coverage of practical techniques by leading researchers. From an algorithms perspective, blind and non-blind approaches are discussed, including the use of single or multiple images; projective motion blur model; image priors and parametric models; high dynamic range imaging in the irradiance domain; and image recognition in blur. Performance limits for motion deblurring cameras are also presented. From a systems perspective, hybrid frameworks combining low-resolution-high-speed and high-resolution-low-speed cameras are described, along with the use of inertial sensors and coded exposure cameras. Also covered is an architecture exploiting compressive sensing for video recovery. A valuable resource for researchers and practitioners in computer vision, image processing, and related fields.
Tags from this library: No tags from this library for this title. Log in to add tags.
No physical items for this record

Title from publisher's bibliographic system (viewed on 05 Oct 2015).

Machine generated contents note: 1. Mathematical models and practical solvers for uniform motion deblurring / Jiaya Jia -- 1.1. Non-blind deconvolution -- 1.2. Blind deconvolution -- 2. Spatially-varying image deblurring / Richard Szeliski -- 2.1. Review of image deblurring methods -- 2.2.A unified camera-shake blur model -- 2.3. Single image deblurring using motion density functions -- 2.4. Image deblurring using inertial measurement sensors -- 2.5. Generating sharp panoramas from motion-blurred videos -- 2.6. Discussion -- 3. Hybrid-imaging for motion deblurring / Shree K. Nayar -- 3.1. Introduction -- 3.2. Fundamental resolution tradeoff -- 3.3. Hybrid-imaging systems -- 3.4. Shift-invariant PSF image deblurring -- 3.5. Spatially-varying PSF image deblurring -- 3.6. Moving object deblurring -- 3.7. Discussion and summary -- 4. Efficient, blind, spatially-variant deblurring for shaken images / Jean Ponce -- 4.1. Introduction -- 4.2. Modelling spatially-variant camera-shake blur.

Contents note continued: 13.8. Summary and discussion.

Contents note continued: 11. Coded exposure motion deblurring for recognition / Scott McCloskey -- 11.1. Motion sensitivity of iris recognition -- 11.2. Coded exposure -- 11.3. Coded exposure performance on iris recognition -- 11.4. Barcodes -- 11.5. More general subject motion -- 11.6. Implications of computational imaging for recognition -- 11.7. Conclusion -- 12. Direct recognition of motion-blurred faces / Rama Chellappa -- 12.1. Introduction -- 12.2. The set of all motion-blurred images -- 12.3. Bank of classifiers approach for recognizing motion-blurred faces -- 12.4. Experimental evaluation -- 12.5. Discussion -- 13. Performance limits for motion deblurring cameras / Mohit Gupta -- 13.1. Introduction -- 13.2. Performance bounds for flutter shutter cameras -- 13.3. Performance bound for motion-invariant cameras -- 13.4. Simulations to verify performance bounds -- 13.5. Role of image priors -- 13.6. When to use computational imaging -- 13.7. Relationship to other computational imaging systems.

Contents note continued: 7.7. Optimized codes for PSF estimation -- 7.8. Implementation -- 7.9. Analysis -- 7.10. Summary -- 8. Richardson-Lucy deblurring for scenes under a projective motion path / Michael S. Brown -- 8.1. Introduction -- 8.2. Related work -- 8.3. The projective motion blur model -- 8.4. Projective motion Richardson--Lucy -- 8.5. Motion estimation -- 8.6. Experiment results -- 8.7. Discussion and conclusion -- 9. HDR imaging in the presence of motion blur / A.N. Rajagopalan -- 9.1. Introduction -- 9.2. Existing approaches to HDRJ -- 9.3. CRF, irradiance estimation, and tone-mapping -- 9.4. HDR imaging under uniform blurring -- 9.5. HDRI for non-uniform blurring -- 9.6. Experimental results -- 9.7. Conclusions and discussions -- 10.Compressive video sensing to tackle motion blur / Dikpal Reddy -- 10.1. Introduction -- 10.2. Related work -- 10.3. Imaging architecture -- 10.4. High-speed video recovery -- 10.5. Experimental results -- 10.6. Conclusions.

Contents note continued: 4.3. The computational model -- 4.4. Blind estimation of blur from a single image -- 4.5. Efficient computation of the spatially-variant model -- 4.6. Single-image deblurring results -- 4.7. Implementation -- 4.8. Conclusion -- 5. Removing camera shake in smartphones without hardware stabilization / Jan Flusser -- 5.1. Introduction -- 5.2. Image acquisition model -- 5.3. Inverse problem -- 5.4. Pinhole camera model -- 5.5. Smartphone application -- 5.6. Evaluation -- 5.7. Conclusions -- 6. Multi-sensor fusion for motion deblurring / Jlngyi Yu -- 6.1. Introduction -- 6.2. Hybrid-speed sensor -- 6.3. Motion deblurring -- 6.4. Depth map super-resolution -- 6.5. Extensions to low-light imaging -- 6.6. Discussion and summary -- 7. Motion deblurring using fluttered shutter / Amit Agrawal -- 7.1. Related work -- 7.2. Coded exposure photography -- 7.3. Image deconvolution -- 7.4. Code selection -- 7.5. Linear solution for deblurring -- 7.6. Resolution enhancement.

A comprehensive guide to restoring images degraded by motion blur, bridging the traditional approaches and emerging computational photography-based techniques, and bringing together a wide range of methods emerging from basic theory as well as cutting-edge research. It encompasses both algorithms and architectures, providing detailed coverage of practical techniques by leading researchers. From an algorithms perspective, blind and non-blind approaches are discussed, including the use of single or multiple images; projective motion blur model; image priors and parametric models; high dynamic range imaging in the irradiance domain; and image recognition in blur. Performance limits for motion deblurring cameras are also presented. From a systems perspective, hybrid frameworks combining low-resolution-high-speed and high-resolution-low-speed cameras are described, along with the use of inertial sensors and coded exposure cameras. Also covered is an architecture exploiting compressive sensing for video recovery. A valuable resource for researchers and practitioners in computer vision, image processing, and related fields.

There are no comments on this title.

to post a comment.
Copyright © 2023 Sciencelib.ge All rights reserved.