National Science Library of Georgia

Image from Google Jackets

Smoothing spline ANOVA models / Chong Gu.

By: Material type: TextTextLanguage: English Series: Springer series in statisticsPublication details: New York : Springer, c2002.Description: xiii, 289 p. : ill. ; 25 cmISBN:
  • 0387953531 (alk. paper)
Subject(s): DDC classification:
  • 311
LOC classification:
  • QA279.G8 2002
Contents:
1. Introduction -- 1.1. Estimation Problem and Method -- 1.2. Notation -- 1.3. Decomposition of Multivariate Functions -- 1.4. Case Studies -- 1.5. Scope -- 2. Model Construction -- 2.1. Reproducing Kernel Hilbert Spaces -- 2.2. Smoothing Splines on {1, ...,K} -- 2.3. Polynomial Smoothing Splines on [0,1] -- 2.4. Smoothing Splines on Product Domains -- 2.5. Bayes Model -- 2.6. Minimization of Penalized Functional -- 3. Regression with Gaussian-Type Responses -- 3.1. Preliminaries -- 3.2. Smoothing Parameter Selection -- 3.3. Bayesian Confidence Intervals -- 3.4. Computation: Generic Algorithms -- 3.5. Software -- 3.6. Model Checking Tools -- 3.7. Case Studies -- 3.8. Computation: Special Algorithms -- 4. More Splines -- 4.1. Partial Splines -- 4.2. Splines on the Circle -- 4.3. L-Splines -- 4.4. Thin-Plate Splines -- 5. Regression with Exponential Families -- 5.1. Preliminaries -- 5.2. Smoothing Parameter Selection -- 5.3. Approximate Bayesian Confidence Intervals -- 5.4. Software: R Package gss -- 5.5. Case Studies -- 6. Probability Density Estimation -- 6.1. Preliminaries -- 6.2. Poisson Intensity -- 6.3. Smoothing Parameter Selection -- 6.4. Computation -- 6.5. Case Studies -- 6.6. Biased Sampling and Random Truncation -- 6.7. Conditional Densities -- 6.8. Response-Based Sampling -- 7. Hazard Rate Estimation -- 7.1. Preliminaries -- 7.2. Smoothing Parameter Selection -- 7.3. Case Studies -- 7.4. Penalized Partial Likelihood -- 7.5. Models Parametric in Time -- 8. Asymptotic Convergence -- 8.1. Preliminaries -- 8.2. Rates for Density Estimates -- 8.3. Rates for Hazard Estimates -- 8.4. Rates for Regression Estimates.
List(s) this item appears in: Springer series | Springer -2000
Tags from this library: No tags from this library for this title. Log in to add tags.
Holdings
Item type Current library Call number Copy number Status Date due Barcode
წიგნი წიგნი ეროვნული სამეცნიერო ბიბლიოთეკა 1 ახალი გამოცემები. დარბ. 4 311 G31 (Browse shelf(Opens below)) 2E58650 Available 2010-0323

Includes bibliographical references (p. [261]-271) and indexes.

1. Introduction -- 1.1. Estimation Problem and Method -- 1.2. Notation -- 1.3. Decomposition of Multivariate Functions -- 1.4. Case Studies -- 1.5. Scope -- 2. Model Construction -- 2.1. Reproducing Kernel Hilbert Spaces -- 2.2. Smoothing Splines on {1, ...,K} -- 2.3. Polynomial Smoothing Splines on [0,1] -- 2.4. Smoothing Splines on Product Domains -- 2.5. Bayes Model -- 2.6. Minimization of Penalized Functional -- 3. Regression with Gaussian-Type Responses -- 3.1. Preliminaries -- 3.2. Smoothing Parameter Selection -- 3.3. Bayesian Confidence Intervals -- 3.4. Computation: Generic Algorithms -- 3.5. Software -- 3.6. Model Checking Tools -- 3.7. Case Studies -- 3.8. Computation: Special Algorithms -- 4. More Splines -- 4.1. Partial Splines -- 4.2. Splines on the Circle -- 4.3. L-Splines -- 4.4. Thin-Plate Splines -- 5. Regression with Exponential Families -- 5.1. Preliminaries -- 5.2. Smoothing Parameter Selection -- 5.3. Approximate Bayesian Confidence Intervals -- 5.4. Software: R Package gss -- 5.5. Case Studies -- 6. Probability Density Estimation -- 6.1. Preliminaries -- 6.2. Poisson Intensity -- 6.3. Smoothing Parameter Selection -- 6.4. Computation -- 6.5. Case Studies -- 6.6. Biased Sampling and Random Truncation -- 6.7. Conditional Densities -- 6.8. Response-Based Sampling -- 7. Hazard Rate Estimation -- 7.1. Preliminaries -- 7.2. Smoothing Parameter Selection -- 7.3. Case Studies -- 7.4. Penalized Partial Likelihood -- 7.5. Models Parametric in Time -- 8. Asymptotic Convergence -- 8.1. Preliminaries -- 8.2. Rates for Density Estimates -- 8.3. Rates for Hazard Estimates -- 8.4. Rates for Regression Estimates.

There are no comments on this title.

to post a comment.
Copyright © 2023 Sciencelib.ge All rights reserved.